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Bottom friction plays an important role in modelling river flows. In three-dimensional (3D) 
models, the vertical discretization is commonly based on σ-layers or z-layers. In this paper 
we focus on a well-known problem encountered when applying z-layers: local truncation 
errors in the computation of bottom shear stress and near-bed turbulence along a sloping 
bottom as e.g. in the case of 3D river simulations. This problem stems from the ‘staircase’ 
representation of the bottom and results in difficulties in the computation of morphological 
changes. We consider uniform channel flow and analyze the influence of variations in near-
bed layer thickness on the local truncation errors in the vertical diffusion term. Application 
of both an algebraic turbulence model, based on a prescribed mixing-length and the 
standard k-ε turbulence model to compute the eddy viscosity is investigated. We consider 
two approaches that reduce the local truncation errors and inspect their applicability for 
more general flow situations. 
 
INTRODUCTION 
 
The computation of bottom shear stress and near-bed turbulence in three-dimensional (3D) 
hydrodynamic models is of key importance for determining flow resistance and morpho-
dynamics. For the vertical discretization in such 3D models, commonly either terrain-
following σ-layers (Phillips [10]) or strictly horizontal z-layers are used (Figure 1). Both 
approaches have their advantages and disadvantages. 

Using σ-layer models, problems arise when modelling stratified flow above steep 
bottom slopes, as shown by e.g. Stelling and Van Kester [12] and Van Kester et al. [5]. The 
z-layer discretization, on the other hand, results in a ‘staircase’ representation of the bottom 
and free surface, see Figure 1. Even using a partial-cell approach (Adcroft et al. [1], 
Pacanowski and Gnanadesikan [8]), the staircase boundaries cause problems. Firstly, 
implicit form drag may be generated due to inadequate treatment of the advection terms 
(see e.g. Beckmann and Döscher [3], Chen [4], Penduff et al. [9], Zhao [14] and Kleptsova 
et al. [6]). Secondly, large ratios in layer thickness - occurring when the bottom or free 
surface passes through a layer interface - result in discontinuities in the velocity and shear 
stress (Figure 1). This is especially critical for the bottom shear stress distribution as it is 
often applied in (coupled) sediment transport and morphodynamic models. 



 
 
Figure 1. Vertical grid structure and bottom shear stress for uniform channel flow, using 
the σ-layer grid (left) and the z-layer grid (right). 
 

Both of these errors diminish with increasing grid resolution. However, e.g. Winton et 
al [13] showed that the required horizontal and vertical resolutions would severely limit the 
applicability of a model to large-scale, long-term simulations. Most of the applications 
found in the mentioned literature concern ocean modelling, focusing on the influence of a 
step-like bottom on free-surface wave dispersion or spurious diffusion of density currents. 

In this paper we aim to reduce the problem of representing bed shear stress along a 
bottom slope in z-layer models. For this purpose, we consider steady uniform flow along a 
constantly sloping channel (Figure 1). We inspect the local truncation errors with respect to 
the analytical solution, for the situation where we have a large near-bed layer thickness 
ratio, due to the partial-cell approach. We consider one existing method to reduce the local 
truncation errors and propose a new one. Only the latter is found suitable for more general 
flow situations and combination with the k-ε turbulence model. We present results obtained 
with the new approach and compare with a conventional method and the analytical 
solution. Finally, we provide conclusions and an outlook to future research. 
 
FLOW MODEL 
 
For uniform channel flow along a constant (mildly-)sloping bottom, the horizontal velocity 
u and vertical turbulent eddy viscosity ντ only vary with the depth. Uniform channel flow 
forms due the balance of frictional and gravitational forces. The averaged flow field shows 
a logarithmic u-profile and a parabolic ντ-profile. For our study, it is sufficient to investigate 
the vertical diffusion term only (omitting advection, horizontal diffusion, lateral effects and 
the transient term). Specifying p ̃ as the kinematic pressure (pressure scaled with density ρ), 
the simplified horizontal momentum equation reads: 



 (1) 
 
The pressure gradient in horizontal direction p ̃x is assumed to be equal to the free-surface 
slope, multiplied by the gravitational acceleration g and the free-surface slope is assumed 
parallel to the bottom, i.e. p ̃x = gζx = -gib, where ib is the bottom slope (positive 
downwards). 

The water column is discretized using horizontal z-layers. We improve the staircase 
representation of the bottom and free-surface level by applying a partial-cell approach, 
resulting in a varying layer thickness near the bottom and free-surface. At the free-surface 
and bottom we specify the shear stress (wind and bottom friction) as boundary conditions. 

Discretizing the diffusion term using central differences one obtains for a layer k: 
 

 (2) 

 
where ∆zk is the layer thickness of layer k and ∆zk+1/2 = ½(∆zk+∆zk+1). The viscosity ντ is 
given (or computed) at the layer interfaces. At this point we are merely interested in the 
effects of large ratios in layer thickness near the bottom. We therefore only consider the 
equation in the layer containing the bottom: k = m. In Eq. (2) we insert the boundary 
condition for the bottom shear stress τb /ρ = ντuz = , where  is the shear velocity and 
we introduce Rm = ∆zm+1 / ∆zm as the layer thickness ratio between layers m+1 and m.  

The equation for layer m becomes: 
 

 (3) 

 
ANALYSIS OF THE EQUATIONS 
 
Discontinuities in velocities and bottom shear stress are known to occur when the bottom 
passes through a layer interface, introducing thin layers. We therefore investigate the 
behaviour of the local truncation error of the diffusion term as a function of the ratio in 
near-bed layer thickness Rm.  

The analytical expressions for the velocity and turbulent eddy viscosity are: 
 

 (4) 

 



 (5) 

 
where H is the total water depth, z0 is the roughness height and κ the von Kármán constant. 
The latter expression for ντ corresponds to the application of an algebraic turbulence model 
based on the mixing-length concept (see e.g. Nezu and Nakagawa [7]). We assume these 
relations hold at least (approximately) in the near-bed layers. In the tests (Figures 4 and 5) 
we investigate the local truncation errors when the standard k-ε turbulence model is applied 
and compare with these analytical profiles.  

Substituting expressions (4) and (5) in Eq. (3) yields the local truncation error in the 
near-bed layer em: 
 

 (6) 

 
If one integrates Eq. (2) over all layers, one obtains the result gib = / H (assuming 

zero wind shear stress). Using this expression we obtain the relative local truncation error in 
the near-bed layer Em = em / (gib): 
 

 (7) 

 
This term depends on Rm, but also on H, z0 and ∆zm. We can reduce the number of 

variables and gain some more insight in the error by introducing the ratios R0 = z0 / ∆zm and 
RH = H / ∆zm. Inserting these expressions in Eq. (7), we obtain: 

 

 (8) 

 
R0 is usually much smaller than the other ratios and can commonly be neglected. We 

therefore focus on the behaviour of the truncation error as a function of Rm and RH. Figure 2 
displays Em (in %, i.e. multiplied by 100) as a function of these two ratios for a roughness 
height z0 = 0.0023m. Three things can be noted: 

 
• The error Em < 20% for Rm ≈ 1 (equidistant near-bed layering) for RH < 10-15. 
• The error Em < 20% for RH ≈ 3 (H ≈ 3∆zm) for Rm < 6-8. 
• The error grows rapidly in all other situations (Em > 500%). 
 



 
 
Figure 2. The relative local truncation error Em of the vertical diffusion term (w.r.t. the 
analytical solution for uniform channel flow, using the algebraic turbulence model) as a 
function of the ratios Rm and RH (using z0 = 0.0023m). 
 
IMPROVEMENTS 
 
In this section, we investigate two possible approaches to reduce the local truncation errors 
in the approximation of the velocity gradients near the bottom. Note that one usually can 
not influence the value of RH. We therefore do not consider it an option to aim for RH ≈ 3. 
 
Existing approach: logarithmic transformation or discretization 
A logical approach is to apply a logarithmic coordinate transformation (see e.g. Zijlema 
[14]) or a logarithmic discretization (e.g. Arya [2]). Others use the degrees of freedom in 
the numerical approximation of the vertical diffusion term by polynomial fitting, to achieve 
both consistency and a zero truncation error, also for non-equidistant layering (see e.g. 
Stelling [10]). These approaches yield accurate results for flows that are very close to uni-
form channel flow, also for moderate ratios in near-bed layer thickness. However, already 
when the velocity profiles are slightly non-logarithmic, the results strongly deteriorate, 
especially when combined with the k-ε turbulence model. As velocity profiles are rarely 
exactly logarithmic, we consider an approach that also works with the application of the k-ε 
turbulence model. 
 
New approach: modification of the near-bed layer distribution 
The local truncation errors were found to be smallest, for Rm = 1, i.e. for equidistant near-
bed layering (for moderate ratios RH). We therefore investigate the use of a remapping to an 
equidistant layer distribution near the bed (see Figure 3). 

 Em > 500% 



 
Figure 3. Remapping of the two near-bed layers to ensure a locally-equidistant layering. 

 
RESULTS 
 
We model uniform channel flow along a 1000m channel, using 25 cells horizontally and 10 
vertical layers. The bottom crosses a layer interface once, at x = 500m, introducing a near-
bed layer ratio Rm ≈ 250. We apply the partial-cell approach, a z0 of 0.0023m and the k-ε 
turbulence model (the algebraic turbulence model yields very similar results). Results 
obtained without near-bed layer modification are compared to results obtained applying the 
proposed mapping to an equidistant near-bed layer distribution (see Figure 3). 

In Figure 4, the profiles of horizontal velocity for all 25 cells along the channel are 
plotted in one location. The profiles are shown for the original layering and the modified 
layering. The analytical solution is included as a reference. One can see that in the original 
situation, the velocity profiles are distorted in some cells, especially near the bottom. This 
occurs in the cells directly downstream of the point where the bottom crosses the layer 
interface. The velocity profiles obtained with the modified layering show much less varia-
tion and coincide quite well with the analytical velocity profile. 

The bottom shear stress should be constant along the channel. In Figure 5 one can see 
that the large near-bed layer thickness ratio introduces a discontinuity in bottom shear 
stress. Using the proposed remapping, the variation is greatly reduced. 

To test the method for use in more general flow situations, we implemented the 
approach in the z-layer module of the Delft3D modelling system (http://oss.delft3d.nl) and 
ran simulations of the flow over a bottom bump passing through a number of z-layers 
(applying again the k-ε turbulence model). Using the new approach, velocity profiles and 
bottom shear stress distributions were found to be much smoother than those obtained using 
the original layering. This provides good prospects for real-life applications using the 
proposed method. Results will be presented in a follow-up paper. 
 
DISCUSSION 
 
It should be noted that the proposed remapping causes neighbour cells to be shifted with 
respect to each other (see Figure 3). This should be taken into account in the computation of 
advection. It should however be noted that one already has to adequately account for 
advection effects at bottom steps, as done e.g. in Kleptsova et al. [6]. Otherwise, the solu-



tion may deteriorate due to spurious form drag. The combination of these two methods is 
therefore interesting to investigate. The layer remapping proposed by Kleptsova et al. [6] 
preserves an equidistant near-bed layering, so no conflicts are expected in the combination. 
The use of an Eulerian-Lagrangian advection scheme may also offer a solution here. 

We also note that the boundary conditions applied in the k-ε turbulence model can have 
a significant influence on the results. We experimented with different ways of specifying 
the bottom boundary condition for k and ε and found that only a few methods provide 
accurate and stable results. Details on this subject are beyond the scope of this paper. 

 

 
 

Figure 4. Velocity profiles for uniform channel flow; original layer distribution (blue 
crosses), modified near-bed layer distribution (green circles) and analytical solution (red 
plusses). 

 
 
Figure 5. Shear stress variation along the channel for uniform channel flow; original 
layering (blue crosses), modified near-bed layering (green circles) and analytical solution 
(red plusses). 
 
CONCLUSIONS 
 
Accurate bottom shear stress computation for uniform channel flow in z-layer models can 
be achieved through a local remapping to an equidistant layering near the bottom. The 
approach functions both in combination with an algebraic mixing-length turbulence model 



and the k-ε turbulence model. Preliminary tests using the new method for the flow over a 
bottom bump show promising results. The simple modifications allow the direct use of 
computed bottom shear stresses for morphodynamical simulations. 
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