Parallel streamline tracking for Telemac

Jacek A. Jankowski

BAW
Department Inland
Waterways Engineering

Fifteenth Telemac Users' Club Chatou, 9-10 October 2008

Semi-Lagrangian advection

- The method of characteristics: the most elegant numerical scheme for solving the advection step
- The main advantages:
 - computing with Courant-Nr. > 1
 - can be efficiently implemented
- The main disadvantages:
 - a non-conservative scheme (in efficient implementations)
 - complex numerical features / programming

Parallel implementation

- Streamline tracking is awkward to parallelise attempts for Telemac:
 - R. Hinkelmann ca. 1996-97 (time step reduction)
 - J.A. Jankowski ca. 2001, the present idea, but abandoned!
 - J.-M. Hervouet ca. 2001, for "mild cases"
 - J.A. Jankowski:
 - 2007 for UnTRIM
 - 2008 for Telemac

Parallel computing

A few words...

Message-passing parallelism

- Each processor executes a program copy with its own data
- Communication limits the scalability of the code
 - preparing data for sending
 - communication itself
 - integrating the received data

mpirun -np 4 ./prog.exe

Domain decomposition method

- Parallel implementation with domain decomposition and non-overlapping mesh partitions (FEM)
- This leads to point-to-point communication between neighbouring partitions for interface node values
- Semi-Lagrangian advection methods do not fit well to this scheme: global communication

Point-to-point communication

Dealing with the Finite Element Method (FEM)

Contributions from elements to nodes

MPI_Send, MPI_Recv

- Point-to-point communication
- Exchanging contributions for interface nodal values

BAW

 Assembling (adding them up)

Global communication

Dealing with the Lagrangian advection (the method of characteristics)

A semi-Lagrangian advection treatment

The pure advection – variable values remain constant along a streamline

streamline tracking over the mesh – backward in time interpolating the value at a located point in the mesh applying the found value further on

semi – actually, the *discretised* values are applied, defined on an Eulerian mesh

Tracking over partitions

- Streamline tracking is awkward in the point-to-point communication pattern between direct neighbours
- Introducing halos: inefficient for larger Courant numbers (large halos, further neighbours to communicate with...)
- Solution: Tracebacks leaving partitions treated in a two-stage algorithm.

Two stages treatment for lost tracebacks

- If a traceback starting from an interface node is completed in one of the neighbouring partitions, the interpolated value is delivered to all these partitions, where this traceback is lost [JMH 2001]
- Only the remaining cases treated in the second stage: tracebacks leaving partitions treated as separate
 objects in an autonomous algorithm [JAJ 2007]

Dog tags for lost tracebacks

An object describing a 'lost' traceback:

TYPE charac type

INTEGER :: mypid,ior

INTEGER :: nepid,ine,kne

INTEGER :: isp,nsp

REAL :: xp,yp,zp

REAL :: basket(basket size)

END TYPE

Tagging a traceback interface mypid/nepid partition: node of origin: ior mypid already done: isp of nsp sub-steps position: xp,yp,zp accepting element,level: partition: found values: basket(:) ine, kne nepid **BAW**

Autonomous tracking

MPI AllToAll

MPI_SendRecv

Sending back

MPI_AllToAll

MPI AllToAll

BAW

Summary: Communication

- FEM (Eulerian):
 - exchanging contributions to interface node values: point-to-point communication
- Advection (Lagrangian):
 - streamline tracking treating tracebacks as autonomous objects: global communication

Reached

- Ten years after: The parallelisation of the one of the most significant Telemac algorithm options is finished!
- The scalability of Telemac is not adversely affected:
 - minimal amount of data exchanged between processors – only the necessary values
- ...but we are not quite happy...

Parallelising...

the reproducibility of the results gains in importance

parallel versions of well-verified algorithms bring into light some of their properties

which were treated as unimportant, irrelevant or the matter of some compromises

...and this is annoying!

Verification

Verification and validation cases deliver in some cases:

- small differences in results between runs with different partition numbers in isolated places, also away from interfaces
- reason: reproducibility of the serial results is slightly affected by mesh sorting
- partitioning re-sorts the mesh, so similar effects

Numerical "dispersion"

- Differently sorted meshes
- The sequence of numeric operations changes
- Starting elements differ
- Tracking paths in substeps differ
- Different elements found as the traceback location
- Different values obtained by interpolations there

Eddies behind bridge pillars

- a standard Telemac2D test case (demanding!)
- comparing parallel (4 processors) and serial results
- influencing the tracking algorithm
- number of sub-steps pro element: nrk=3 (default)
- number of sub-steps pro element: nrk=10
- nrk=10 and taking for each traceback the same number of sub-steps (maximum found) nspmax

ncsize=4 u_in=1m/s

Facts

- fact 1: the results reproducibility is affected by the mesh sorting (partitioning!)
- fact 2: numerical "dispersion" diminishes when tracking algorithm quality is increased
- fact 3: the actual results change as well... (huh!)

Outlook

- improving the (serial) algorithm quality?
- a new tracking algorithm? which one?
- finding a new compromise between the quality and the computational efficiency?
- doing nothing? (we lived with it for over 20 years...)

I listen to all questions!

mailto: jacek.jankowski@baw.de

Advection

The advection equation says:

the variable f does not change along a characteristic curve (streamline):

$$\frac{\partial f}{\partial t} + \mathbf{u} \cdot \nabla f = \frac{df}{dt} = 0$$

Streamline tracking

The idea is:

in order to find out the nodal value, follow the characteristic curve backward in time:

$$\frac{dx_j}{dt} = u_j \qquad \Rightarrow \qquad x_j^b = x_i^{n+1} - u_j \Delta t$$

Second order interpolation

- Presentation at TUC2000 by Andreas Malcherek
- Requirement of computationally efficient and accurate advection schemes
- Reducing numerical diffusion by a higher interpolation order

Second order interpolation

- Presentation at TUC2001 by Andreas Malcherek and J.A. Jankowski
- Second order interpolation for Telemac2D
- Good results
- Never implemented in the production code
- Abandoned

