
www.baw.de

UnTRIM-related activities at BAW Karlsruhe

Regina Patzwahl, Jacek A. Jankowski, Thomas Lege

www.baw.de

Improving and optimising UnTRIM MPI library

Jacek A. Jankowski

Page 3

UnTRIM version applied

• UnTRIM „compiled June 2009“– the last version
before sub-grids

• computational core MPI-parallelised with minimal
changes in the code

• almost generic User Library adapted for typical river
flows, waterways...

• Applied daily for larger, high resolution river models
• 2-3 millions of base polygons, 64-128-256 partitions

Page 4

Parallel library: work aims 2009-10

• Performance gain – try to make it fit for a large
number of processors

• Easy workflows – simplify steps in pre- and post-
processing

• Suspected improvements – just trying

Page 5

Addressed topics

• Asynchronous message passing
• Partitioning:

• heterogeneous meshes
• weighting

• Parallel I/O:
• removing merging and restart partitioning
• optimisations via input mesh sorting

Page 6

Communication
patterns

FV/FD – Eulerian

• swapping halo values via
 point-to-point communication
• two pairs of buffered MPI_Send and MPI_Recv joined to

MPI_SendRecv for fields of elementary types

Page 7

Communication
patterns

 Advection – Lagrangian

• streamline tracking treating tracebacks
as autonomous objects – global communication

• Using MPI_AllToAll for objects being MPI_Type-s

Page 8

MPI_Send, MPI_Recv with buffers

nsxnsi1 nsnsf

nsxnsi1 nsnsf

MPI_Send MPI_Recv

Processor #1

Processor #2

Page 9

Swapping data with buffers

• Work in a loop over all communication partners
• Pack data to be sent into the send buffer
• Exchange data with MPI_SendRecv
• Copy the data from the receive buffer to the field
• Return...

Page 10

MPI_Type_Indexed

nsi0

ind(1)

nsf ns

ind(3)ind(2)

blen(1) blen(2) blen(3)

CALL MPI_Type_Indexed (3,blen,ind,MPI_INTEGER,newtype,ier)
CALL MPI_Commit (newtype, ier)
CALL MPI_Send (field,1,newtype,...)
CALL MPI_Free (newtype,ier)

Page 11

Asynchronous communication

• Synchronous – MPI_Send, MPI_Recv
• no computing is being done until the message

passing completes

• Asynchronous – MPI_ISend,MPI_IRecv,MPI_Wait
• sending and receiving messages can be overlapped

with computing „in the meanwhile“

Page 12

Hiding the buffering

• Work in separate loops over all communication partners
• Start receiving data to the receive buffer with MPI_IRecv
• Pack field data to be sent into send buffers
• Start sending data with MPI_ISend
• Test with MPI_Wait if receiving messages is completed
• Move the data from the receive buffers to the field
• Test with MPI_Wait if sending messages is completed
• Return...

Page 13

Asynchronous communication

• Results of „hiding the buffering“, e.g. the model of the
Elbe River by Coswig:

• the global swapping communication time
 (sum for all ranks) reduces by 13%-23%

• better results for larger rank numbers (range 32-128)
• but the global computation time reduces only by 1%!

Page 14

Partitioning

• Moved from METIS 4.0 (1998) to 5.0pre2 (2007)
(METIS library – thanks to Karypis et al.)

• Small modifications (C functions interfaces) necessary
• Correct C-binding in Fortran2003 possible

• Allows:
• Partitioning of heterogeneous meshes
• Weighting of partitions with weights per polygon

Page 15

Heterogeneous mesh
Additional pre-processing before
partitioning removed

Homogeneous mesh
Direct partitioning

Page 16

Weighted partitioning

• Metis per default:

• balances the mesh partition size according to the
number of 2D polygons → computation balanced

• reduces the length of interfaces between partitions to
a minimum → communication minimised

• Other criteria – weights per polygon – possible

Page 17

Weighted partitioning

• Reading and interpolating a characteristic water level
• Creating a run-relevant 3D mesh while partitioning

• Tried weighting with the number of:
• polygons (~ne) – default
• wet cells in the water column (~n3e)
• wet cells in the water column plus one (~n3e+ne)
• ...other criteria straightforward to implement

Page 18

Weighted partitioning

• Results not encouraging yet...
• in theory, weighting should take into account the

computational effort per polygon
• but be checked with the growth of the length of the

interfaces - communication amount

• presently all runs balanced with polygons (~ne) are
better than taking wet cells (~n3e, ~n3e+ne)

• balance the communication amount instead...?

Page 19

Parallelising I/O

• Operational systems per default assume that only one
process accesses a given single file

• The traditional method of treating I/O in message-passing

programs:
 → each rank reads and writes its own set of files

• MPI 2 allows ordered I/O-operations of a set of ranks
accessing a single file – MPI-I/O

Page 20

 partrim

partrim.inp

input.grd.004-001 … 004

input.srs.004-001 … 004

input.bnd.004-001 … 004

partrim.lst

surface.pin

input.srs

input.idx.004-001 … 004

input.grd

Partitioned files

Page 21

untrim

restarter mergerpartrim untrim

untrim

Normal
workflow

Page 22

elementary data type

holes

Single rank view of the file

file data type

local data

global displacement locally accessible data

record 3record 2record 1

Page 23

process 0 file type

process 1 file type

process 2 file type
elementary type

Complementary file types

File types of three ranks
complementing each other
to cover the records of
the global file entirely

global displacement

tiling a file with file types

record 1 record 2 record 3

Page 24

CALL MPI_Type_Indexed &
 & (len,blength,delta,MPI_REAL8,view,ier)
CALL MPI_Type_Commit(view,ier)

Committing a file view
A non-decreasing displacement-blocklength description of the length len=3

delta(3)=12delta(2)=7

blength(1)=2 blength(3)=4blength(2)=2

delta(1)=2

Page 25

CALL MPI_File_Open &
 & (MPI_COMM_WORLD,TRIM(mpiio_restart_file), &
 & IOR(MPI_MODE_CREATE,MPI_MODE_WRONLY), &
 & MPI_INFO_NULL, fhrst, ier)

CALL MPI_File_Set_View &
 & (fhrst, idisp, MPI_REAL8, view, 'native', &
& MPI_INFO_NULL, ier)

CALL MPI_File_Write_All &
 & (fhrst, iobuffer, lenbuf, MPI_REAL8, &
& MPI_STATUS_IGNORE, ier)

Writing a MPI-I/O file

Page 26

Fortran pitfalls

Only direct-access binary files possible in Fortran
In the serial case:

OPEN (ini, FILE=TRIM(get_initial_file(),
 STATUS='old',
 FORM='unformatted',
 ACCESS='direct',
 RECL=reclen*dp_length)
READ (ini, REC=1) t, e(1:ne), u(1:n3s)

Page 27

untrim

partrim untrim

untrim

New
workflow

Page 28

Optimising MPI-I/O

• Using MPI-I/O removed the necessity of merging result files
and partitioning of restart files

• However – mostly no gain in I/O-performance compared to
the usage of partitioned files during the parallel run

• Suspected:
• extermely long displacement-blocklength descriptions of

file views in partitions (3D!)
• overlapping of file views for edges, sides

Page 29

Re-sorting the global mesh

• The file view descriptions represent relations between
the global and local numbering of mesh objects

• These descriptions can be drastically shortened by re-
sorting the original global mesh in the sequence of
partitions

• Two arts of file view descriptions available – with and
without overlapping on interfaces

Page 30

Optimised MPI-I/O

• Test done on „normal“ file systems – i.e. no hardware
acceleration for MPI-I/O

• Using sorted meshes speeds MPI-I/O operations 2-8 times
• Better gains for smaller number of processors / larger files
• Removing overlapping views – almost(?) no effect

Page 31

Optimised MPI-I/O overhead (1)

• The original meshes sorted so that they remain
correct UnTRIM meshes
• All the index ranges remain meaningful

• We must use nondecreasing displacement-blocklength
file view description

• Negative effect by a single file view per field:
• I/O must be buffered (up to 2-3% loss...)

Page 32

Optimised MPI-I/O overhead (2)

• The restart files must be sorted before the run as well
• The results are available on sorted meshes

• Makes comparisons of results difficult
• Solutions:

• a small serial program to transfer data between the
original and sorted meshes – in both directions

• do not sort vertices and use vertex-oriented
visualisation software (Tecplot)

Page 33

MPI-I/O assessment

• Advantages
• Partitioning and merging large result files obsolete
• Simplifies workflows

• Disadvantages
• In optimised form requires an awkward mesh sorting
• Complicates workflows

Page 34

Summary

• Communication
• Balance against workload remains an open problem!
• Asynchronous communication – OK
• MPI data types for communications – not done

• Partitioning meshes
• improved, but still using a lot of files

• MPI-I/O
• to be assessed / decided using parallel data systems

Page 35

Possible future work directions

• Working on partitioning software
• parallel partitioning execution
• simplifying the usage

• Working on the balancing of the parallel runs
• especially communication

• Parallel I/O:
• Hardware-specific improvements
• Using specialised I/O-libraries for data / visualisation

Page 36

I listen to all questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

