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UnTRIM version applied 

• UnTRIM „compiled June 2009“– the last version 
before sub-grids

• computational core MPI-parallelised with minimal 
changes in the code

• almost generic User Library adapted for typical river 
flows, waterways... 

• Applied daily for larger, high resolution river models
• 2-3 millions of base polygons, 64-128-256 partitions 
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Parallel library: work aims 2009-10

• Performance gain – try to make it fit for a large 
number of processors 

• Easy workflows – simplify steps in pre- and post-
processing

• Suspected improvements – just trying
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Addressed topics

• Asynchronous message passing
• Partitioning:

• heterogeneous meshes
• weighting

• Parallel I/O:
• removing merging and restart partitioning
• optimisations via input mesh sorting
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Communication
patterns

FV/FD – Eulerian

• swapping halo values via 
    point-to-point communication 
• two pairs of buffered MPI_Send and MPI_Recv joined to 

MPI_SendRecv for fields of elementary types
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Communication
patterns

  Advection – Lagrangian

• streamline tracking treating tracebacks 
as autonomous objects – global communication

• Using MPI_AllToAll for objects being MPI_Type-s
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MPI_Send, MPI_Recv with buffers

nsxnsi1 nsnsf

nsxnsi1 nsnsf

MPI_Send MPI_Recv

Processor #1

Processor #2
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Swapping data with buffers

• Work in a loop over all communication partners
• Pack data to be sent into the send buffer
• Exchange data with MPI_SendRecv
• Copy the data from the receive buffer to the field
• Return...
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MPI_Type_Indexed

nsi0

ind(1) 

nsf ns

ind(3)ind(2)

blen(1) blen(2) blen(3)

CALL MPI_Type_Indexed (3,blen,ind,MPI_INTEGER,newtype,ier)
CALL MPI_Commit (newtype, ier)
CALL MPI_Send (field,1,newtype,...)
CALL MPI_Free (newtype,ier) 
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Asynchronous communication

• Synchronous – MPI_Send, MPI_Recv
• no computing is being done until the message 

passing completes

• Asynchronous  – MPI_ISend,MPI_IRecv,MPI_Wait
• sending and receiving messages can be overlapped 

with computing „in the meanwhile“
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Hiding the buffering

• Work in separate loops over all communication partners
• Start receiving data to the receive buffer with MPI_IRecv
• Pack field data to be sent into send buffers
• Start sending data with MPI_ISend 
• Test with MPI_Wait if receiving messages is completed
• Move the data from the receive buffers to the field
• Test with MPI_Wait if sending messages is completed
• Return...
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Asynchronous communication

• Results of „hiding the buffering“, e.g. the model of the 
Elbe River by Coswig: 

• the global swapping communication time
         (sum for all ranks) reduces by 13%-23%

• better results for larger rank numbers (range 32-128) 
• but the global computation time reduces only by 1%! 
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Partitioning

• Moved from METIS 4.0 (1998) to 5.0pre2 (2007)       
(METIS  library – thanks to Karypis et al.)

• Small modifications (C functions interfaces) necessary
• Correct C-binding in Fortran2003 possible

• Allows: 
• Partitioning of heterogeneous meshes
• Weighting of partitions with weights per polygon
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Heterogeneous mesh
Additional pre-processing before 
partitioning removed

Homogeneous mesh
Direct partitioning  
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Weighted partitioning

• Metis per default: 

• balances the mesh partition size according to the 
number of 2D polygons → computation balanced

• reduces the length of interfaces between partitions to 
a minimum → communication minimised

• Other criteria – weights per polygon – possible
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Weighted partitioning

• Reading and interpolating a characteristic water level
• Creating a run-relevant 3D mesh while partitioning

• Tried weighting with the number of: 
• polygons (~ne) – default 
• wet cells in the water column (~n3e) 
• wet cells in the water column plus one (~n3e+ne)
• ...other criteria straightforward to implement
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Weighted partitioning

• Results not encouraging yet... 
• in theory, weighting should take into account the 

computational effort per polygon
• but be checked with the growth of the length of the 

interfaces - communication amount 

• presently all runs balanced with polygons (~ne) are 
better than taking wet cells (~n3e, ~n3e+ne) 

• balance the communication amount instead...?



Page 19

Parallelising I/O

• Operational systems per default assume that only one 
process accesses a given single file

 
• The traditional method of treating I/O in message-passing 

programs:  
          → each rank reads and writes its own set of files

• MPI 2 allows ordered I/O-operations of a set of ranks 
accessing a single file – MPI-I/O 
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 partrim 

partrim.inp

input.grd.004-001 … 004

input.srs.004-001 … 004

input.bnd.004-001 … 004

partrim.lst

surface.pin

input.srs

input.idx.004-001 … 004

input.grd

Partitioned files
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untrim

restarter mergerpartrim untrim

untrim

Normal
workflow
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elementary data type

holes

Single rank view of the file

file data type

local data

global displacement locally accessible data

record 3record 2record 1
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process 0 file type

process 1 file type

process 2 file type
elementary type

Complementary file types

File types of three ranks 
complementing each other 
to cover the records of  
the global file entirely

global displacement

tiling a file with file types

record 1 record 2 record 3
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CALL MPI_Type_Indexed & 
   & (len,blength,delta,MPI_REAL8,view,ier)
CALL MPI_Type_Commit(view,ier)

Committing a file view 
A non-decreasing displacement-blocklength description of the length len=3

delta(3)=12delta(2)=7

blength(1)=2 blength(3)=4blength(2)=2

delta(1)=2
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CALL MPI_File_Open & 
       & (MPI_COMM_WORLD,TRIM(mpiio_restart_file), &
       & IOR(MPI_MODE_CREATE,MPI_MODE_WRONLY), &
       & MPI_INFO_NULL, fhrst, ier)

CALL MPI_File_Set_View & 
       & (fhrst, idisp, MPI_REAL8, view, 'native', &           
& MPI_INFO_NULL, ier)

CALL MPI_File_Write_All & 
       & (fhrst, iobuffer, lenbuf, MPI_REAL8, &                
& MPI_STATUS_IGNORE, ier)

Writing a MPI-I/O file 
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Fortran pitfalls

Only direct-access binary files possible in Fortran
In the serial case: 

OPEN (ini, FILE=TRIM(get_initial_file(),
           STATUS='old',
           FORM='unformatted', 
           ACCESS='direct',
           RECL=reclen*dp_length)
READ (ini, REC=1) t, e(1:ne), u(1:n3s) 



Page 27

untrim

partrim untrim

untrim

New
workflow
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Optimising MPI-I/O

• Using MPI-I/O removed the necessity of merging result files 
and partitioning of restart files

• However – mostly no gain in I/O-performance compared to 
the usage of partitioned files during the parallel run

• Suspected: 
• extermely long displacement-blocklength descriptions of 

file views in partitions (3D!) 
• overlapping of file views for edges, sides  
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Re-sorting the global mesh

• The file view descriptions represent relations between 
the global and local numbering of mesh objects

• These descriptions can be drastically shortened by re-
sorting the original global mesh in the sequence of 
partitions 

• Two arts of file view descriptions available – with and 
without overlapping on interfaces 
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Optimised MPI-I/O

• Test done on „normal“ file systems – i.e. no hardware 
acceleration for MPI-I/O 

• Using sorted meshes speeds MPI-I/O operations 2-8 times
• Better gains for smaller number of processors / larger files
• Removing overlapping views – almost(?) no effect 
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Optimised MPI-I/O overhead (1)

• The original meshes sorted so that they remain 
correct UnTRIM meshes
• All the index ranges remain meaningful

• We must use nondecreasing displacement-blocklength 
file view description

• Negative effect by a single file view per field:
• I/O must be buffered (up to 2-3% loss...)
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Optimised MPI-I/O overhead (2)

• The restart files must be sorted before the run as well
• The results are available on sorted meshes

• Makes comparisons of results difficult
• Solutions:

• a small serial program to transfer data between the 
original and sorted meshes – in both directions

• do not sort vertices and use vertex-oriented 
visualisation software (Tecplot) 
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MPI-I/O assessment 

• Advantages
• Partitioning and merging large result files obsolete
• Simplifies workflows

• Disadvantages
• In optimised form requires an awkward mesh sorting
• Complicates workflows
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Summary

• Communication
• Balance against workload remains an open problem! 
• Asynchronous communication – OK
• MPI data types for communications – not done

• Partitioning meshes 
• improved, but still using a lot of files

• MPI-I/O 
• to be assessed / decided using parallel data systems
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Possible future work directions

• Working on partitioning software
• parallel partitioning execution 
• simplifying the usage

• Working on the balancing of the parallel runs
• especially communication

• Parallel I/O:
• Hardware-specific improvements
• Using specialised I/O-libraries for data / visualisation
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I listen to all questions
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