Parallel streamline tracking for UnTRIM

Jacek A. Jankowski

BAW

Department Inland Waterways Engineering Fourth UnTRIM Workshop Trento, 7-9 May 2007

Message-passing parallelism

- Each processor executes a program copy with its own data
- Communication limits the scalability of the code
 - preparing data for sending
 - communication itself
 - integrating the received data

exe

/prog

4

du-

mpirun

Domain decomposition method

- Parallel implementation with domain decomposition and overlapping mesh partitions
- This leads to point-to-point communication between neighbouring partitions
- Semi-Lagrangian advection methods do not fit well to this scheme

Contents

- Communication
 - point-to-point for the halo swapping (done 2004-5)
 - global communication for the advection (done 2007)
- Recommendations how to
 - reduce differences between serial and parallel results
 - maintain scalability

Point-to-point communication

Dealing with the Finite Volume/Differences Methods

Horizontal structure

- Point-to-point communication
- Halo swapping in the order of direct neighbour pairs
- Objects are polygons, edges, cells, faces...

MPI SendRecv with Buffers

BAW

Processor #2

Federal Waterways Engineering and Research Institute (BAW) Karlsruhe - Hamburg - Ilmenau

BAW

MPI_Type_Indexed

CALL MPI_Type_Indexed (3,blen,ind,MPI_INTEGER,newtype,ier) CALL MPI_Commit (newtype, ier) CALL MPI_Send (field,1,newtype,...) CALL MPI_Free (newtype,ier)

FD/FV Method: Swapping

- FD/FV numerical scheme of UnTRIM point-to-point communication between neighbour partitions is adequate:
 - allocation of separate communication buffers
 - send: data sorted to a send-buffer and sent
 - **receive**: data copied from a *receive*-buffer
- Performance improvements(?): MPI Data types, pointers

Common edges / faces treatment

- Values computed on common objects available for both partners
- Options mean value, leaving "as is", upstream...
- Best results: taking the upstream value

Global communication

Dealing with the Lagrangian methods (advection)

Federal Waterways Engineering and Research Institute (BAW) Karlsruhe - Hamburg - Ilmenau

Lagrangian scheme

- Advection scheme in UnTRIM semi-Lagrangian
 - streamline tracking over the mesh backward in time
 - interpolating a value at a found point in the mesh
 - applying the find value further on
- **semi²** Requires a special treatment in partitioned meshes

Tracking over partitions

- Streamline tracking is awkward in the point-to-point communication pattern between direct neighbours
- Inefficient for larger Courant numbers (large halos, further neighbours to communicate with...)
- Solution: Tracebacks leaving partitions treated as separate objects in an *autonomous* algorithm

Dog tags for lost tracebacks

An object describing a 'lost' traceback:

TYPE charac_type

INTEGER	•••	<pre>mypid,ior,jor,kor</pre>
INTEGER	•••	nepid,i,k
REAL(dp)	•••	tres, xs(2), zs
REAL(dp)	•••	us(2),ws
INTEGER	::	isat,mem
END TYPE		

Autonomous tracking

- Define a MPI data type for a traceback
- Each traceback leaving a partition gets

 an identifier with the position of the *head*
 - and a 'basket' to bring values back
- The traceback is **implanted** in the neighbourhood to be followed further for the remaining fraction of time **tres**

Autonomous tracking

- When the *foot* is found, the traceback is collected locally together with the interpolated value u* on a heap
- When all *feet* are found everywhere, the tracebacks are sorted according to the partition they originate from (*head*)
- ...and send back using the global communication methods
- ...and the found values applied

Autonomous tracking

Sending back

MPI AllToAll

*

Federal Waterways Engineering and Research Institute (BAW) Karlsruhe - Hamburg - Ilmenau

MPI_AllToAll contra MPI_SendRecv

- Initially, *point-to-point* communication has been chosen whenever possible, MPI_Send_Recv in order to reduce the number of communication partners
- Test have shown that the *global* communication is efficient enough - finally **MPI_AllToAll** and **MPI_AllToAllv** has been applied for all sorts of communication

Summary: Communication

- FD/FV (Eulerian):
 - swapping halo values: point-to-point communication
 - common interface edges or faces: upstream values
- Advection (Lagrangian):
 - streamline tracking treating tracebacks as autonomous objects: global communication

Verification

Differences in parallel and serial results

Harbour

Recommendations

In order to diminish the differences between serial and parallel runs:

- Avoid any aspects of the mesh dependency
- Do not simplify the physics
- Transport phenomena small errors add up...

Scalability

Speedups obtained with the MPI-parallel UnTRIM

obelix.karlsruhe.baw.de

- **obelix+idefix (**4+1 cabinets)
- SGI Altix 3600
- 256+48 1600 MHz Itanium-2 processors, 6MB cache
- 256+48GB **shared** memory
- 64-bit SuSE Linux 10.0
- CPU-Sets with PBS-Pro
- Intel and Gnu compilers
- OpenMP and MPI
- A *state-of-the-art* parallel computer

Coswig - speedup relative to 1p. (middle water, 2D, ne=738485)

Coswig - efficiency relative to 1p. (middle water, 2D, ne=738485)

Coswig - speedup relative to 96p. (middle water, 2D, ne=738485)

Coswig - efficiency relative to 96p. (middle water, 2D, ne=738485)

Coswig - speedup relative to 8p. (middle water, 3D hyd, n3e=8006838)

Coswig - speedup relative to 8p. (middle water, 3D, non-hyd, n3e=8006838)

BAW

Harbour (ne=13069, n3e=405139)

The Saale/Elbe confluence (ne=126402, dx=15-20m)

Recommendations

In order to maintain a good scalability of the scheme, avoid:

- runs with more than ca. 10% halo cells
- partitioning "in vain" e.g. of dry-only cell areas
- large numbers of iterations in equation solvers, diffusion and transport schemes (>50) and large number of traceback interface crossings (>5)

Reached

- A parallel UnTRIM implementation without compromising the properties of the serial code
- A good scalability due to:
 - communication adequately designed for the significant parts of the algorithm
 - minimal amount of data exchanged between processors

To be addressed (soon?)

- Portability of the parallel advection scheme code
- Performance measurements (professional tools)
- Point-to-point communication with MPI data types
- Parallel User Interface (boundaries...)
- Parallel I/O (for profiles, time series, discharges...)
- Partitioning methods (boundaries...)
- Cache misses improve the 'data locality'

I listen to all questions!

Additional transparencies

... for discussions, etc.

Discussion

Existing and alternative advection schemes applicable for UnTRIM

Lagrangian advection scheme

- Contains of three parts:
 - algorithm for the streamline tracking backward in time over the mesh
 - interpolation scheme for the values at the characteristic curve foot
 - applying the obtained values
- Unconditionally stable, but...
- ...the quality depends...
 - mostly on the interpolation scheme (linear, bilinear,...)
 - less on the tracking algorithm by high-quality meshes

BAV

Advection: an implicit scheme?

- Advantages:
 - a linear equation system is to be solved with simple methods
 - straightforward to implement in parallel
 - "implemented successfully in one of the older programs of TU Delft" [G.Stelling]
- Disadvantages:
 - implemented for linear interpolations, properties for higher orders and unstructured meshes?
 - "an implementation can be considered only when the existing algorithm is very inefficient in parallel" [V.Casulli]

Advection: Eulerian scheme?

- Implement a modern, conservative, etc. Eulerian schemes):
 - very simple to implement in parallel
 - unfortunately: the Courant-Number limitation is valid
- SUNTANS (*Fringer, Gerritsen, Street, 2006*) uses such scheme (by *Perot 2000*) in parallel:
 - tested for deep waters (internal waves)
 - unstable by tidal flats (but maybe OK for 2D)
 - Lagrange scheme newly implemented [O.B.Fringer, pers.comm.]
 - well known properties only for structured meshes [V.Casulli]

Extending overlapping halos

- Advantages:
 - avoiding any changes of the original code
 - only domain decomposition and communication software
- Disadvantages:
 - the overlapping width cannot be foreseen easily
 - for larger Courant numbers always too many halo cells
 - for larger number of processors always too much communication, what affects the scalability strongly [O.B.Fringer, pers. comm.]

Conclusions

All existing and alternative advection schemes applicable for UnTRIM can be treated in the framework of the developed MPI library:

- Lagrange schemes: autonomous tracking with global communication
- Eulerian & implicit schemes halo swapping with point-to-point communication

Advection speedup

For the model The Elbe River by Coswig Speedup achieved in the advection loop of the subroutine explicit

Coswig, advection speedup relative to 1p. (middle water, 2D, ne=738485)

Coswig, advection speedup relative to 8p. (middle water, 3D hyd, n3e=8006838)

Coswig, advection speedup relative to 8p. (middle water, 3D, non-hyd, n3e=8006838)

Federal Waterways Engineering and Research Institute (BAW) Karlsruhe - Hamburg - Ilmenau

Examples

various transparencies for additional examples

Federal Waterways Engineering and Research Institute (BAW) Karlsruhe - Hamburg - Ilmenau

Coswig mesh

CoswigQH-mem nk = 22 nv = 743882 ns = 1482366 ne = 738485 nbc = 102 n3s = 16149014 n3e = 8006838 ncs = 00.645 < A < 10.083

1112	dx <	1 m
1468496	dx <	10m
1468496	dx <	100m

Mesh sorting influence

Domain decomposition obtained by **Metis**

Partitions balanced in terms of cell numbers and interface lengths

BAW

16 partitions

*

BAW

Iterative UnTRIM parts

horizontal and vertical velocity: iterative treatment of the explicit horizontal viscosity terms: **HVIS, DELT**

preliminary water level: Np linear equations, preconditioned conjugate gradient: **EPSI**

hydrodynamic pressure: Np*Nz linear equations, preconditioned conjugate gradient: **QEPSI**

species transport: an iterative algorithm for the transport treatment **DTMIN, DELT** In all these algorithm parts a special care must be taken for the communication inside the iterations

machone.karlsruhe.baw.de

- SGI Altix 350
- **four** 1400 MHz Itanium-2 processors, 3MB cache
- 4GB shared memory
- 64-bit Linux
- Intel and Gnu compilers
- OpenMP and MPI

