Tag Archives: general purpose GPU computing

Evaluation and adaption of the SPH method for hydraulic engineering problems on federal waterways

E. Rustico and J. A. Jankowski

BAW internal R&D-project report, 2010-2016.

Abstract: Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method for fluid dynamic simulations. In the past decades it drew the attention of the scientific community for its versatility and the possibility to simulate complex phenomena such as e.g. surface tension and fluid-solid interactions with floating objects. SPH has in general higher computational requirements than the most common Eulerian methods and several different models have been proposed for the treatment of boundaries, each with advantages and limitations. Continue reading

Multi-GPU, multi-node SPH implementation with arbitrary domain decomposition

E. Rustico, J. Jankowski, A. Hérault, G. Bilotta and C. Del Negro

Abstract: We present a restructured version of GPUSPH, a CUDA-based implementation of SPH. The new version is extended to allow execution on multiple GPUs on one or more host nodes, making it possible to concurrently exploit hundreds of devices across a network, allowing the simulation on larger domains and at higher resolutions. Partitioning of the computational domain is not limited anymore to parallel planes and can follow arbitrary, user-defined shapes at the resolution of individual cells, where the cell is defined by the auxiliary grid used for fast neighbor search. Continue reading

Adaptierung und Erweiterung von Casulli-Algorithmen für Parallelrechner mit Hardware-Beschleunigung und zur Anwendung von konservativen Advektionsverfahren

Jacek A. Jankowski

BAW internal R&D-project report, 2010-2012.

Abstract: The aim of the R&D-project is development and application of new programming paradigms in high performance computing through the adaptation of Casulli algorithms for arriving parallel computer architectures with hardware acceleration. Additionally, the existing advection schemes should be adapted for all flow regimes. Continue reading

A hardware-accelerated parallel implementation of a two-dimensional scheme for free surface flows

Results of implementing a two-dimensional semi-implicit scheme for free surface flows applying CUDA for a Nvidia GPU. Continue reading

A hardware-accelerated parallel implementation of a two-dimensional scheme for free surface flows

J.A. Jankowski

Abstract: This contribution concerns the verification and performance assessment of a hardware-accelerated parallel implementation of an algorithm for the semi-implicit finite difference method for solving the vertically integrated shallow water equations including a non-linear treatment of wetting and drying and conservative advection schemes. Continue reading